x^2+4x+1=2/3

Simple and best practice solution for x^2+4x+1=2/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+4x+1=2/3 equation:



x^2+4x+1=2/3
We move all terms to the left:
x^2+4x+1-(2/3)=0
We add all the numbers together, and all the variables
x^2+4x+1-(+2/3)=0
We get rid of parentheses
x^2+4x+1-2/3=0
We multiply all the terms by the denominator
x^2*3+4x*3-2+1*3=0
We add all the numbers together, and all the variables
x^2*3+4x*3+1=0
Wy multiply elements
3x^2+12x+1=0
a = 3; b = 12; c = +1;
Δ = b2-4ac
Δ = 122-4·3·1
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{33}}{2*3}=\frac{-12-2\sqrt{33}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{33}}{2*3}=\frac{-12+2\sqrt{33}}{6} $

See similar equations:

| 11x+7-7x+11=24 | | -5x+1=x+25 | | 2(x+25)=(8x-10) | | 0=-8x^2-11x+54 | | 7x+3/4-2x=9x8/3 | | -y^2+3y=9y-9 | | 5x+2/8=7 | | 3x=11x-5 | | 6q−8=7q | | 4x+2x+1+x+7=48 | | -2+2/3x=-8 | | 2n−10=3n | | -3-x/2=-1 | | -4(2x-10)=-24 | | 540=9(x+3) | | 6x+5=41+3x | | 8x-5(10+9x)=4(x+1+18) | | 4t+3=-9 | | 9x-10+5x=8-3x+10 | | -3u=-5 | | 5x*6+x=44 | | -u/5=-36 | | 4p+7=2(p+3) | | A=1/2h(10+9) | | 2(x+1)=37-3x | | 2x+-44+48=180 | | -3=4x+2=-5 | | x(x+-44)48=180 | | 3x(x+2)¡5(x¡3)=17 | | 2.6=f+3.7 | | 2+5+(-3,31l)=2+2−5,31l. | | 10x2=7x+3 |

Equations solver categories